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Abstract

Researchers in human nutrition commonly refer &'tbnsistent’ diet effect (i.e. the main effect
of diet) and an ‘inconsistent’ diet effect (i.esubject by diet interaction). However, due to the
non-replicated designs of most studies, one canestimate the first part using ANOVA,; the
latter (interaction) is confounded with the residugise. In many diet studies, it appears that
subjects do respond differently to the same deethe subject by diet interaction may be large.
In a search of over 40,000 published human nutrisknidies, most using a crossover design, we
found that in none was a subject by diet interacéffect estimated. For this paper, we
examined LDL-cholesterol data from a non-replicatezssover study with four diets, the typical
American diet, with and without added plant steratsd a cholesterol-lowering Step-1 diet, with
and without sterols. We also examined LDL-choledtéata from a second crossover study
with some replications with three diets, representhe daily supplement of 0, 1 or 2 servings of
pistachio nuts. These two data sets were chossube experience suggested that LDL-
cholesterol responses to diet tend to be subjetdfsp The second data set, with some
replication, allowed us to estimate the subjectligy interaction term in a traditional ANOVA
framework. One approach to estimating an interaatibect in non-replicated studies is through
the use of a multiplicative decomposition of theeraction (sometimes called AMMadditive
main effects, multiplicative interaction). In thige of analysis, residuals, formed after
estimated main effects are subtracted from the da¢aarrayed in a matrix with diets as columns
and subjects as rows. A singular value decomjposdf the matrix is performed and the first, or
first and second, principal component(s) are useestimates of the interaction, and can be
tested for significance using approximétéests. Using the Bnmpackage, we found large and
significant subject by diet interaction effectdioth data sets; estimates of the interaction in the
second data set were similar to interaction esémfiom traditional ANOVA. Of an additional
26 dependent variables from the first and a thathdet (the latter investigating the effect of
mild alcohol consumption on blood variables), 18 bagnificant subject by diet interactions,
based on the AMMI methodology. These results ssigipat the subject by diet interaction is
often important and should not be ignored whenyaivad) data obtained from non-replicated
crossover desigasthe AMMI methodology works well and is readily aladile in statistical
software packages.
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1. Introduction

The use of crossover designs for human nutritieh studies were discussed in the 1930’s with
the writings of T.W. Simpson (Jones and Kenward99&arly on in this literature, many of the
peculiarities characteristic of crossover desigasawnvestigated, such as period and carry-over
effects (Jones and Kenward 1989) but there appedave been little interest in estimating
subject-diet interactions. Traditionally theseides are not replicated (each subject goes
through a series of different diets without repggtny of them) and analyzed in an ANOVA
framework. Without replication, the subject-dietaraction is confounded with the residual term.
If this interaction term is large, tests on the medifects in a linear model become more
conservative.

There appears to be some recognition that the guthijet interaction may be large and
should be accounted for in clinical trials (Hautlkak 2000). Some sophisticated statistical
technigues have been developed for this problemthose of Ghosh and Crosby (2005). Their
idea was to group subjects that respond similantgss the diets, then to treat these groups as if
they were replicates of the same individual. Ceretben estimate both a subject-diet interaction
term and a residual. If statistics is part sciesoe part art, the part that is art involves degdi
how to group subjects. They show that it is pdedib use fairly objective criteria for a single
dependent variable. However, our own experiensiagua clustering algorithm and multiple
dependent variables, is that subject group conmipasithange for different collections of
dependent variables, and this impacts the estinadtb® interaction and residual terms.

A different approach, and one that has apparemtiypreviously been explored by
researchers in the nutrition field, is to use atiplitative decomposition of a ‘residual’ formed
by subtracting estimated main effects from the .datais ‘residual’ contains both the subject-
diet interaction as well as within-subject noisedg. A multiplicative decomposition of this
‘residual’, using, say, principal components, carubed to extract the signal, i.e. the subject-diet
interaction. One can use approximateests to determine how many principal componerds a
required (typically one or two), resulting in a fi#on of this ‘residual’ term into a part that can
be attributed to subject-diet interaction and d fheat represents within-subject variability.

Considering that the use of applying principal comgnts to the residuals of a non-
replicated two factor ANOVA to estimate an interagtterm has been available since 1968
(Gollob 1968), and special cases of it even eadiech as Tukey’s (1949) one d.f. test for
interaction, it is remarkable that a search thratlnghliterature (over 40,000 studies in the last 10
years) for subject-diet interactions in human rigtni studies yielded no "hits". We searched
issues of thdournal of Nutritionand theAmerican Journal of Clinical Nutritioffor articles
(both primary research and review articles) fro@@®é early 2010 with "crossover” (or a
similar term indicating the study used a crossa\esign) and phrases indicating that the authors
were aware of a potential subject by diet intecac{e.g. "subject by diet interaction”, "subject
by treatment interaction”, "repeated treatmenisitdnsistent diet/treatment effect”, etc.).
Finding no "hits" at all was surprising becauseaeshers seem to be well aware of the
heterogeneity in responsiveness to dietary inté¢iwes (Rideout 2011), and many of the studies
were done in collaboration with statisticians. Wlaur search techniques may not have been



optimal, the lack of "hits" is consistent with aubjective opinion that these researchers
generally do not recognize that a subject by distraction term is missing from their analyses.

A new wrinkle has been introduced with the advémhixed models software, human
nutrition experiments are now often analyzed withjscts as a random effect (thus a subject-
diet interaction would also be a random effect)thdugh perhaps unrecognized by researchers,
ignoring effects in mixed models does not necelyshave the same outcome as ignoring them
in linear models with only fixed effects. Whilenigring a fixed subject-diet interaction term in a
linear model makes the test on diet more consematinoring a random subject-diet interaction
term in a mixed model can make the test on die¢®sigely liberal, as demonstrated in Boykin
et al. (2011). In a small mixed model simulationimicking the kind of data collected in non-
replicated human nutrition studies, we found tidiile among-subject variance was accurately
estimated, the estimated ‘residual’ variance wasitB0% less than the sum of the true variance
contributions of error and subject-diet interactidrhus the estimated variability in an
experiment was, on average, less than that actpidsent, leading to inflatdetstatistics,
consistent with results from Boykin et al. (2011).

In this paper, we work through the estimation &f shubject-diet interaction in a non-
replicated human nutrition study. We do a simélaalysis for a second study which differed in
an important way; there was some replication, aligvwus to directly compare a model with a
multiplicative decomposition of the subject-dieteiraction with one analyzed using traditional
ANOVA methods. This is important because a muttgilve decomposition of the interaction
using principal components may not capture the kinglLibject-diet interaction estimated using
traditional ANOVA (had there been sufficient replilon), the way most researchers would
recognize and understand this interaction. We Hnmily discuss results from the first data set
and a third data set, both with many different aelemt variables, to see how often a subject-diet
interaction occurred.

2. Description and analysis of dataset 1

An analysis of these data was published by Chah é€2009). The object of the study was to
determine if the main effects of diet (typical Anoan diet versus recommended cholesterol-
lowering Step-1 diet) and incorporation of plamrets (believed to lower LDL-cholesterol, O
and 3.3 g/day) were additive. A number of bloothpounds were measured on 22 adult men
and women, we only discuss results for LDL-choledteEach subject went through each of the
four diets, each lasting 23 days, with no washeuiogl. As is typical of crossover designs,
different cohorts of the subjects were on differdiets at each of the four periods. Measures are
means of two samples, from day 22 and day 24 df padod. Baseline (pre-experiment)
measurements were taken during the week prioretdéginning of the experiment. The original
data were analyzed without transformation, in #malysis we took natural logs. Figure 1 gives
scatter plots representing each subject on eatttedbur diets; the blue line in each plot
represents no change from baseline. What is obvromn this figure is the large effect of
adding plant sterols to a dief'fZolumn).

In a traditional linear model context, with altfars fixed, the first step is to subtract the
main effects of diet and subject to form ‘residyabown in Fig. 2. These ‘residuals’ contain
the confounded within-subject error and diet-treatmnteraction effects. The AMMI (additive
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Figure 1. Scatter plots of pre-experiment basdbigd_DL-cholesterol values versus log
LDL-cholesterol values on each of the four dietéie blue line represents no change from
baseline. STP = Stepl diet, TAD = typical Americet, O = no plant sterols added to
diet, 1 = plant sterols added to diet.

main effects, multiplicative interaction) model daeprincipal components decomposition of the
‘residuals’, after they have been arrayed intolgestt (row) by diet (column) matrix. Typically,
the first (or first and second) principal compoiighare used to capture the interaction; the
remainder of the variance goes to within-subjeairerThe AMMI model can be written as

Vije — (A +Bx; + &+ 7)) = Z AvirGjr + €ijks
T

wherey are LDL-cholesterol datajndexes dietg, indexes subject indexes diet repeats for
subjectj, 1 the overall mearf the vector of slopes for covariates the overall diet effect on
LDL, y the subject effect, the singular value for componant’ the eigenvalue score for diet

and component, § the eigenvalue score for subjgeind component, ande random error. For
the data and model just describké;, 1 (i.e. no repeats),(the subject effect) is considered to be
a fixed effect, and there are no covariates. Talpgiovariates that are considered for these kinds
of studies are gender, age, body-mass index (Bibign effects (e.g. period, carryover,
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Figure 2. Scatter plots of baseline log LDL-chadest values versus ‘residuals’, formed
by subtracting the diet and subject main effedmfthe data. See Fig. 1 caption for
explanation of plot titles. The horizontal bluedirepresents the mean of the ‘residuals’,
zero, useful to judge if baseline values are ptadiof diet effects, after removing the
subject main effect. There is some indication thatmodel somewhat under predicts
LDL-cholesterol for subjects with lower baselindues on the STP1 diet.

sequence), and, jfis considered as a random effect, the subjectsllme measurement. For
this data set, none of these candidate covariggsaaed useful.

Figure 3 may help to understand in a graphical whagt the principal components
decomposition is doing. Essentially, the firsngipal component rotates and scales the
‘residuals’ in such a way that, at least for thd®8Tand TAD1 diets, the ‘residuals’ can be
replaced by a line. In the traditional way of agating for degrees of freedom (e.g. Gollob
1968), this first principal component ‘costs’ 23ydees of freedom, the formula is: (num. trts — 1)
+ (num. subj. — 1) + (2 — 1), whera is theith component, here 1. For these data, the second
principal component also appears useful (Fig.ldxppears to capture the interaction effects for
the other two diets, TADO and STP1, at a ‘cosbfd.f. More recent work on multiplicative
decomposition models has determined that Golldl968) degrees of freedom produce
somewhat liberdaF-tests, i.e. too many multiplicative terms can &@ined. Several alternate
methods to calculate degrees of freedom have bepoged (reviewed in Dias and Krzanowski
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Figure 3. ‘Residual’ values (created by subtrartimain effects from the data, so
including subject-diet interaction), on th@xis, plotted against the rotation and scaling
performed by the first principal component, on xrexis.

2003), many favor Mandel's (1971) estimates (obththrough simulation), though these may
be too large for the first few principal componenior our data, the method used to obtain
degrees of freedom does not change overall cocisisthough it does affect the number of
components needed by the model.

There is software available to perform this analysboth SAS (Lee and Johnson 2006;
SAS macros are available at http://www.k-state stdtg/facultypages/ammi_macros.htm, along
with a manual; by default degrees of freedom aleutated using Mandel's (1971) method,
though Gollob's (1968) method is also available) Bn(e.g. packaggnm only Gollob's (1968)
degrees of freedom estimates are available). \0 sbde and output from the R software (R
Development Core Team 2011), since R was usedhéoanalysis of the data presented here, but
also include test results based on Mandel's (18&@)ees of freedom. Tlhygam(generalized
nonlinear models) package (Turner and Firth 20itd pfbroad spectrum of models, including
AMMI models. Of potential interest to users of ANkhodels, this package can also fit models
from non-normal distributions, e.g. Poisson anahbiral, so may be of use for count data. We
know of no other software that will fit native cdwata with an AMMI model. It does not (yet)
fit random effects.
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Figure 4. ‘Residual’ values (created by subtrartimain effects from the data, so
including subject-diet interaction), on thi@xis, plotted against the rotation and scaling
performed by the second principal component, orxidoes.

The following code was used to fit the data aftergnmpackage was installed and
loaded, and thep dataset read in.

mai nef fectsl <- gnn(LDLC ~ trt + I D, data=lp)

bilinearl <- update(maineffectsl, . ~. + Milt(trt, |1p$ID)
bilinear2 <- update(maineffectsl, . ~ . + instances (Mult(trt, |p$ID), 2))
anova( mai nef fectsl, bilinearl, bilinear2, test = "F")

The first line fits a basic ANOVA model. The seddime updates the ANOVA model with a
multiplicative interaction term using the first pcipal component only. The third line updates
the ANOVA model with a multiplicative interactioertn composed of the first and second
principal components. The fourth line tells R tspthy F-test results, testing whether the
increased complexity of the models with the multigiive interaction term(s) significantly
improve(s) the model, output below.



Anal ysi s of Deviance Table

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 63 3.2190
2 40 1.3372 23 1.8818 5.3934 0.0002225 ***
3 19 0.2882 21  1.0490 3.2930 0.0057560 **

Based on this output, both the first and secomkcpal components appear to be necessary.
D.E. Johnson kindly supplied us with the degredsesfdom using Mandel's simulation method,
which results in the revised table below (change<alded).

Anal ysi s of Deviance Tabl e

Resid. Df Resid. Dev Df Deviance F Pr (>F)
1 63 3.2190
2 40 1.3372 31 1.8818 2.5275 0. 0454 *
3 12 0. 2882 20 1. 0490 2.1839 0. 0832

The reallocation of degrees of freedom (from treédheal to the principal components) changes
both theF-values and thp-values (now only the first principal componensignificant ato. =
0.05, though we retain both for the discussion fibikdws).

To examine the relative contributions to the tetaiance, as sums of squares, from each
of the terms in théi | i near 2 model (with two principal components), the command
anova (bilinear2),was run, with the following output.

Df Devi ance Resid. Df Resid. Dev

NULL 87 27. 9587
trt 3 4.8605 84 23. 0983
I D 21 19.8793 63 3. 2190
Mult (trt, Ip$ID inst = 1) 23 1. 8818 40 1.3372
Mult (trt, Ip$ID inst =2) 21 1. 0490 19 0. 2882

The columns titled “Deviance” give the sums of ggggpseudo sums of squares for
multiplicative interaction components and estimattiin-subject variation). The largest
source of variation is among subjects (ID). Fertivo sources that relate to treatment, the
inconsistent (interaction, summing over the twa@pal components) diet effect is about 60%
as large as the consistent (main) diet effect. p8saido sums of squares for the multiplicative
interaction terms can also be obtained directlynftbe singular value decomposition; they are
the squares of thgs. Note that the ‘residual’ sum of squares (dataus main effects) is
3.2190, only 0.2882 of that (9%) is within-subjeator, so ignoring the interaction would make
a test on the diet main effect much more conseragiven with the loss of degrees of freedom
to the interaction.

A useful graphical tool to understand which sutg€or diets) are poorly fit by the
interaction term is a biplot. As an example, th@di for the first principal component is given
in Fig. 5. Subjects and diets further from theoZare are less well captured by the first printipa
component, in this plot these are subjects 180618568, and diets STPO and TAD1 (recall that
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Figure 5. Biplot giving the values on the firsinmipal componentytaxis) for each
subject and diet and their average log (LDL-cheles} values on thg-axis. Points
further from zero on thg-axis are less well captured by the subject-diefraction, as
represented by the first principal component.

these are the two diets whose interaction effeetewot represented well with the first principal
component).

Since mixed models are often used to analyze thieds of data, it is worth investigating
how estimates change by considering subjects tarmom effects. Interactions between a fixed
and random effect are typically considered alsoetoandom effects. However, since it was not
clear to us how to conduct a singular value decaitipa in a mixed models framework (though
Gogel et al. 1995 do present an algorithm for esimg such a model), what we did instead was
create the ‘residual’ array from the residuals afiazed model where diet was a fixed effect and
subjects a random effect, baseline LDL-cholestead also included as a fixed effect covariate.
Differences between the all fixed effects model gredrandom effects model were small (Table
1 gives sums of squares). These results are psotyqical for these kinds of data sets as long
as the number of subjects is sufficiently largeravide an accurate estimate of the random
among-subject variance (i.e. there is little shaigd), and the baseline covariate is included
(which will account for much of the among subjeatiability as a fixed effect).



Table 1. Sums of squares (pseudo sums of squardsefinteraction components) from a
random effects model and from a fixed effects moagsihg the same LDL-cholesterol data set
with four diets.

Effect SS-random effects model SS-fixed effects model
Diet 4.8605 4.8605
PC1 1.8855 1.8818
PC2 1.0755 1.0490

3. Description and analysis of dataset 2

For this study, there was deliberate replicatios Gubjects each replicated one of three diets) so
that a direct comparison could be made betweengusaditional ANOVA to estimate the
subject-diet interaction and using a multiplicativeteraction from a singular value
decomposition (principal components) to estimate Hubject-diet interaction. Since a
multiplicative decomposition of the interaction dosot necessarily capture the same effect as
the interaction in a traditional ANOVA, we wantem\terify that a multiplicative decomposition
and a traditional ANOVA analysis done using the samman nutrition dataset would yield
similar estimates of the magnitude of the interacti

The 16 subjects were stratified by gender andainlbody mass index (BMI), and
randomly assigned to a treatment sequence, comgsisfithree amounts of pistachios fed as a
part of a controlled diet for three weeks each:.oudces of pistachios per day (control), 1.5
ounces of pistachios per day, and 3 ounces ofgbists per day. Each subject participated in
two different diets; with one diet repeated twioad subject did not repeat a diet). On the last
day of each treatment period, subjects providedstetl blood sample. There was a break of
approximately one week in between each treatmeitcge

The study was conducted as an incomplete bloclgdesiperiment; each subject was a
block. Due to the study design (each subjectg@pdied in two different diets, with one diet
repeated), there were missing cells in the mafrsubjects by treatments, which is not allowed
for a singular value decomposition. We did twassdtanalysis to circumvent this problem.
One set was composed of three analyses based etigtivgubsets (so the matrices had no
missing values). The second used imputation fmntissing cells, based on a mixed analysis of
the original data to calculate the subject by treatt variance. The 16 missing cells were
imputed using a BLUP estimate to which 16 sampia® fa normal distribution, with mean zero
and variance based on the estimated subject byne@avariance, were added. A mixed model
analysis of this augmented data set produced paeaesimates very close to the original ones.
The residuals from this augmented data set (orgithe subject by treatment variance term from
the model) were then arrayed in a 16 by 3 matrixn(veplicate subject-treatment combination



residuals averaged) for the SVD. Similar to thalgsis for dataset 1, carryover, period, and
other candidate covariate effects were small, sonotuded in the analyses. We considered
subject to be a random effect, so formed our ‘reidnatrices from a mixed models residual, as
described above for dataset 1. The variance estinfiar the interaction terms calculated with
both methods is given in Table 2.

Variance estimates for the two-diet subsets arergdlg not as similar to each other as
they were for the augmented data set, likely dusotb the small number of subjects in the
subsets and that the two-diet subsets are attegnaticapture the subject-diet interaction with
only one principal component.

From dataset 1 and another published study innglmoderate alcohol consumption
(Baer et al. 2002), both using non-replicated @wessdesigns, we had 26 dependent variables
available. Using the same methods described alooveixed models, we found that 19 (73%)
had significant subject-diet interactions, base@ onultiplicative decomposition of the ‘residual’
matrix. This suggests that subject-diet interaxtiare widespread in nutrition studies.

Table 2. Estimates of the subject-diet interactiariance using a mixed model (column 2) or a
multiplicative decomposition of the interactionmugiprincipal components (column 3).

Subject-diet  Variance estimate Number of principal Number of subjects
variance using a multiplicative ~ components retained
estimate using decomposition
mixed model
Complete
(incomplete 0.04260 16
block design)
Control vs. 1
serving 0.00380 0.01049 1 5
Control vs. 2
servings 0.40976 0.16071 1 5
2vs. 1 0.02592 0.02138 1 6
serving
Complete +
augmented 0.04052 0.04634 2 16
with imputed

data




4. Conclusions

Despite the fact that essentially no nutrition gadising crossover designs test for a subject-diet
interaction effect, researchers in the field gelhetanderstand that not every subject responds to
a diet in the same way. We have formally demotesdrehat a subject-diet interaction exists for
many of the dependent variables in three dataseisnot clear to us why, when smaller effects,
such as period and carryover, are fussed overaurtthely estimated, this potentially much more
important interaction effect is ignored. Perhdpsrion-replicated nature of the design (making
it more difficult to estimate this interaction effgand the general absence of discussion on
treatment-subject interaction in texts on crossolesigns contribute to researchers not
recognizing that this term is missing from theiayses. Researchers in this field, however,
often collaborate with statisticians (who ‘shoultbkv better’), and the field is both sufficiently
mature and sufficiently well populated by publicas that this finding is overdue.

Using a multiplicative decomposition to estimdtis interaction term works well for
crossover designs (as it does for agriculturatiftebls, where it is commonly employed, see
Gauch 1992) and does not require that subjectateldets, which is cost-prohibitive for most
nutrition studies. Thus, the only additional burda the researchers is at the analysis stage.
Given that software is available in commonly usidistical packages and that the analysis is
itself straightforward, this is a rather small bemdor such a potentially large benefit, and we
feel that nutrition researchers (and other reseasclising crossover designs, such as in clinical
trials) should routinely adopt this methodology floeir analyses.

Of particular interest may be how much variabilgyaccounted for by the diet main
effect (consistent diet effect) versus the subgketinteraction (inconsistent diet effect). Irrou
datasets we found that the two parts were sinolat DL-cholesterol, but there were other blood
variables where most of the diet effect was in @nthe other of the two parts. If the interaction
component is at all large, one must be careful tpmscriptive diets, which may affect different
people in different ways. Clearly, if a diet'sedt is mostly expressed in the subject-diet
interaction, one cannot give general guidelines.

If the subject-diet interaction is large, it may ossible to find groups of subjects that
behave similarly, which may provide clues aboutittieience of genetic or environmental
backgrounds. This is necessary as we move towdndidualized diet recommendations.

5. Summary

Human nutrition diet studies using crossover desgjarted in the 1930’s. While researchers in
this field commonly refer to the ‘consistent’ dedfect (i.e., a main effect) and an ‘inconsistent’
diet effect (i.e., a subject by diet interactia)e to the non-replicated designs of most studies,
one can only estimate the first part using ANOVFe latter (interaction) is confounded with
the residual noise. There are important consecpsetihat result from not separating the
interaction from residual noise. The first is ttieg error term is estimated to be too large,
making significance tests excessively conservatietraditional ANOVA framework. In a
mixed models framework, with subjects random, igmgpthe interaction has the opposite effect,
the test on main effects can be too liberal. iy @ase, as the field is moving towards



individualized diet prescriptions, ignoring thigenaction ignores a subject specific response to a
diet, and one that, if investigated, might reve&iesting environmental or genetic background
effects. In many diet studies, it appears thajesuib do respond differently to the same diet, so
the subject by diet interaction may be large. Havein a search through over 40,000 published
human nutrition studies, most using a crossovagdewe found that in none was a subject by
diet interaction effect estimated.

We examined LDL-cholesterol data from a non-repéidecrossover study with four diets,
the typical American diet, with and without addddnp sterols, and the Step-1 diet, with and
without sterols. We also examined LDL-cholestelata from a crossover study with some
replications with three diets, representing théydaipplement of 0, 1 or 2 servings of pistachio
nuts. These data sets were chosen because exgesigggested that LDL-cholesterol responses
to diet can be subject-specific. The second dattansth some replication, allowed us to
estimate the subject by diet interaction term iraditional ANOVA framework. The first and a
third data set was also examined to see if thes@ation term was present for other blood
variables.

One approach to estimating an interaction effecioin-replicated studies is through the
use of a multiplicative decomposition of the intg¢ran. This approach is commonly used in
agricultural field studies under the name AMMI (dnk@ main effects, multiplicative interaction)
because, whether or not replication exists, theeeehelief that this approach yields better
predictions. In this type of analysis, ‘residuafsrmed after estimated main effects are
subtracted from the data, are arrayed in a matitix éets as columns and subjects as rows. A
singular value decomposition of the matrix is perfed and the first, or first and second,
principal component(s) are used as estimates ahtbeaction, and can be tested for significance
using approximaté-tests. Using the Bnmpackage to estimate parameters from these data set
with this methodology, we found large and significaubject by diet interaction effects in both
data sets, and estimates of the interaction is¢lcend data set were similar to interaction
estimates from traditional ANOVA. Of an additior2fl dependent variables from the first and
third data set (the latter involving moderate atdatonsumption), 19 had significant subject by
diet interactions, based on the AMMI methodologyese results suggest that the subject by
diet interaction is often important and should betignored when analyzing data obtaining from
non-replicated crossover designs. The AMMI mettagypappears to be a viable solution to
estimate subject-diet interactions in non-replidatessover designs.
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